
Valgrind overview:
Runtime memory checker and a bit more...

What can we do with it?

Sergei Trofimovich – slyfox@gentoo.org

MLUG

Mar 30, 2013

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



The problem

When do we start thinking of weird bug in a program?

the output is a random garbage

random SIGSEGVs

abort() messages showing ”double free()” corruption

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



The problem

When do we start thinking of weird bug in a program?

the output is a random garbage

random SIGSEGVs

abort() messages showing ”double free()” corruption

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



The problem

When do we start thinking of weird bug in a program?

the output is a random garbage

random SIGSEGVs

abort() messages showing ”double free()” corruption

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



The problem

When do we start thinking of weird bug in a program?

the output is a random garbage

random SIGSEGVs

abort() messages showing ”double free()” corruption

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Introduction

Meet the valgrind:

a commandline tool

$ valgrind program [args...]

to search bugs in binary applications

which contain C/C++ code

not scripts or bytecode

Author: Julian Seward

compiler writer

bzip2

works on current Mozilla’s JavaScript engines

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



First example: no errors

simple.c

1 int main() {

2 return 0;

3 }

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



First example: no errors

run-simple.sh

make simple CFLAGS=-g

valgrind ./simple # to stderr

valgrind --log-file=simple.vglog ./simple # to log

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



First example: no errors

simple.vglog

==14290== Memcheck, a memory error detector

==14290== Copyright (C) 2002-2012, and GNU GPL’d, by Julian Seward et al.

==14290== Using Valgrind-3.9.0.SVN and LibVEX; rerun with -h for copyright info

==14290== Command: ./simple

==14290== Parent PID: 14287

==14290==

==14290==

==14290== HEAP SUMMARY:

==14290== in use at exit: 0 bytes in 0 blocks

==14290== total heap usage: 0 allocs, 0 frees, 0 bytes allocated

==14290==

==14290== All heap blocks were freed -- no leaks are possible

==14290==

==14290== For counts of detected and suppressed errors, rerun with: -v

==14290== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 2 from 2)

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Simple leak

01-leaky.c

1 #include <stdlib.h> /* malloc(), free() */

2 void * leaky() {

3 return malloc (42);

4 }

5 int main() {

6 free ((leaky(), leaky()));

7 return 0;

8 }

9

10 // check as: valgrind --show-reachable=yes \

11 // --leak-check=full \

12 // --track-origins=yes \

13 // --quiet

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Simple leak

01-leaky.vglog

==14293== 42 bytes in 1 blocks are definitely lost in loss record 1 of 1

==14293== at 0x4C2C1DB: malloc (vg_replace_malloc.c:270)

==14293== by 0x4005C9: leaky (01-leaky.c:3)

==14293== by 0x4005D9: main (01-leaky.c:6)

==14293==

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Use of uninitialized memory

02-uninit.c

1 int use_uninit (char * uninit) {

2 if (*uninit > 42) /* oh, what will happen ? */

3 return 24;

4 else

5 return 42;

6 }

7 int foo (void) {

8 char garbage;

9 use_uninit (&garbage);

10 }

11 int main() {

12 return foo ();

13 }

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Use of uninitialized memory

02-uninit.vglog

==14297== Conditional jump or move depends on uninitialised value(s)

==14297== at 0x40052D: use_uninit (02-uninit.c:2)

==14297== by 0x400550: foo (02-uninit.c:9)

==14297== by 0x40055B: main (02-uninit.c:12)

==14297== Uninitialised value was created by a stack allocation

==14297== at 0x40053D: foo (02-uninit.c:7)

==14297==

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Out of bounds access

03-oob.c

1 #include <stdlib.h> /* malloc(), free() */

2

3 int main() {

4 char * p = (char *) malloc (32);

5 *(p + 32 + 129) = ’\0’; /* whoops */

6 free (p);

7 return 0;

8 }

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Out of bounds access

03-oob.vglog

==14302== Invalid write of size 1

==14302== at 0x4005DC: main (03-oob.c:5)

==14302== Address 0x51d80e1 is not stack’d, malloc’d or (recently) free’d

==14302==

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind

Sometimes compiler optimizations make the final code a complete
mess. Here is some tips to make valgrind logs more readable:

build your programs/libraries with -g compiler options to emit
DWARF debugging symbols (./configure CFLAGS=-g
CXXFLAGS=-g)

or install debugging symbols for them (if exist)

do not overoptimize things:

-O2 optimization reorders and inlines too much code
-O1 is usually good-enough
-O0 is likely too slow
-Og (gcc-4.8 feature) sounds promising

-fno-builtin is your friend as valgrind can detect more bugs in
mem*() and str*() functions.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind

Sometimes compiler optimizations make the final code a complete
mess. Here is some tips to make valgrind logs more readable:

build your programs/libraries with -g compiler options to emit
DWARF debugging symbols (./configure CFLAGS=-g
CXXFLAGS=-g)

or install debugging symbols for them (if exist)

do not overoptimize things:

-O2 optimization reorders and inlines too much code
-O1 is usually good-enough
-O0 is likely too slow
-Og (gcc-4.8 feature) sounds promising

-fno-builtin is your friend as valgrind can detect more bugs in
mem*() and str*() functions.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind

Sometimes compiler optimizations make the final code a complete
mess. Here is some tips to make valgrind logs more readable:

build your programs/libraries with -g compiler options to emit
DWARF debugging symbols (./configure CFLAGS=-g
CXXFLAGS=-g)

or install debugging symbols for them (if exist)

do not overoptimize things:

-O2 optimization reorders and inlines too much code
-O1 is usually good-enough
-O0 is likely too slow
-Og (gcc-4.8 feature) sounds promising

-fno-builtin is your friend as valgrind can detect more bugs in
mem*() and str*() functions.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind

Sometimes compiler optimizations make the final code a complete
mess. Here is some tips to make valgrind logs more readable:

build your programs/libraries with -g compiler options to emit
DWARF debugging symbols (./configure CFLAGS=-g
CXXFLAGS=-g)

or install debugging symbols for them (if exist)

do not overoptimize things:

-O2 optimization reorders and inlines too much code
-O1 is usually good-enough
-O0 is likely too slow
-Og (gcc-4.8 feature) sounds promising

-fno-builtin is your friend as valgrind can detect more bugs in
mem*() and str*() functions.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind

Sometimes compiler optimizations make the final code a complete
mess. Here is some tips to make valgrind logs more readable:

build your programs/libraries with -g compiler options to emit
DWARF debugging symbols (./configure CFLAGS=-g
CXXFLAGS=-g)

or install debugging symbols for them (if exist)

do not overoptimize things:

-O2 optimization reorders and inlines too much code
-O1 is usually good-enough
-O0 is likely too slow
-Og (gcc-4.8 feature) sounds promising

-fno-builtin is your friend as valgrind can detect more bugs in
mem*() and str*() functions.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind: user’s assistance

You can guide valgrind through the source code and tell him the
facts about the program he does not know.
There is a mechanism for it: /usr/include/valgrind/*.h

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind: an example

04-helpy-uninit.c

1 static char tb[32];

2 char * get_temp_buffer () {

3 return tb;

4 }

5 void free_temp_buffer (char * b) { /* superoptimization! */ }

6 int user1 (char * b) {

7 memset (b, 32, ’A’);

8 return b[7]; /* a lot of hard work on ’b’ */

9 }

10 int user2 (char * b) {

11 /* we forgot this: memset (b, 32, ’B’); */

12 return b[7]; /* a lot of hard work on ’b’ */

13 }

14 int main() {

15 char * b; int r1, r2;

16

17 b = get_temp_buffer(); r1 = user1 (b); free_temp_buffer (b);

18 b = get_temp_buffer(); r2 = user2 (b); free_temp_buffer (b);

19 return r1 + r2;

20 }

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind: an example

04-helpy-uninit.vglog

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind: an example

04-helpy-uninit-2.c

1 #include <valgrind/memcheck.h>

2 static char tb[32];

3 char * get_temp_buffer () {

4 VALGRIND_MAKE_MEM_UNDEFINED(tb, 32);

5 return tb;

6 }

7 void free_temp_buffer (char * b) { /* superoptimization! */ }

8 int user1 (char * b) {

9 memset (b, 32, ’A’);

10 return b[7]; /* a lot of hard work on ’b’ */

11 }

12 int user2 (char * b) {

13 /* we forgot this: memset (b, 32, ’B’); */

14 return b[7]; /* a lot of hard work on ’b’ */

15 }

16 int main() {

17 char * b; int r1, r2;

18

19 b = get_temp_buffer(); r1 = user1 (b); free_temp_buffer (b);

20 b = get_temp_buffer(); r2 = user2 (b); free_temp_buffer (b);

21 return r1 + r2;

22 }

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Helping valgrind: an example

04-helpy-uninit-2.vglog

==14306== Syscall param exit_group(status) contains uninitialised byte(s)

==14306== at 0x4EEAA79: _Exit (_exit.c:32)

==14306== by 0x4E6BC6F: __run_exit_handlers (exit.c:92)

==14306== by 0x4E6BC94: exit (exit.c:99)

==14306== by 0x4E5576B: (below main) (libc-start.c:257)

==14306== Uninitialised value was created by a client request

==14306== at 0x4007F4: get_temp_buffer (04-helpy-uninit-2.c:4)

==14306== by 0x400894: main (04-helpy-uninit-2.c:20)

==14306==

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



More APIs to plug into your code

valgrind-APIs.h

1 /* valgrind/memcheck.h */

2 VALGRIND_MAKE_MEM_NOACCESS(_qzz_addr,_qzz_len)

3 VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr,_qzz_len)

4 VALGRIND_MAKE_MEM_DEFINED(_qzz_addr,_qzz_len)

5 VALGRIND_CREATE_BLOCK(_qzz_addr,_qzz_len, _qzz_desc)

6 VALGRIND_CHECK_MEM_IS_ADDRESSABLE(_qzz_addr,_qzz_len)

7 VALGRIND_CHECK_MEM_IS_DEFINED(_qzz_addr,_qzz_len)

8 VALGRIND_CHECK_VALUE_IS_DEFINED(__lvalue)

9 VALGRIND_COUNT_LEAKS(leaked, dubious, reachable, suppressed)

10 /* valgrind/valgrind.h */

11 RUNNING_ON_VALGRIND

12 VALGRIND_DISCARD_TRANSLATIONS(_qzz_addr,_qzz_len)

13 VALGRIND_NON_SIMD_CALL0(_qyy_fn)

14 VALGRIND_NON_SIMD_CALL1(_qyy_fn, _qyy_arg1)

15 ...

16 VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed)

17 VALGRIND_FREELIKE_BLOCK(addr, rzB)

18 VALGRIND_CREATE_MEMPOOL(pool, rzB, is_zeroed)

19 VALGRIND_DESTROY_MEMPOOL(pool)

20 VALGRIND_MEMPOOL_ALLOC(pool, addr, size)

21 VALGRIND_MEMPOOL_FREE(pool, addr)

22 ...

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Bugs in the wild

Recently found bugs:

cvsps: invalid handling of external modules

btrfs-progs: invalid checksums for built data

cvs: massive memory leak on long sessions

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more

https://gitorious.org/cvsps/cvsps/commit/c4b06934ede0ad50b4d88c6d7cc0bf86bc9ebb39
https://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/commit/?id=8e4b7e883abfca81cd864808da729b2227cff34c
http://sources.gentoo.org/cgi-bin/viewvc.cgi/gentoo-x86/dev-vcs/cvs/files/cvs-1.12.12-fix-massive-leak.patch?view=markup


Magic!

What a great tool!

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Or not?

Well... there is something I
have hidden from you.

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Generic instrumentation framework

How does valgrind work internally?

userspace JIT compiler with full CPU emulation (just like
qemu in binary translation mode)

uses VEX library to decoding guest code CPU instructions and
assembling host code

uses coregrind library to emulate operating system syscalls

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Portability

As valgrind goes down to syscall instructions it needs to know the
syscall ABI, signal ABI, etc. of host and guest (emulated) OSes.
Thus valgrind:

won’t work on windows in it’s current form as there is no
documented syscall ABI.
But! There is some gross hacks to run wine under valgrind to
unstrument PE files. Scary :]
works poorly on rare OSen (like various BSDs), but it’s a
matter of adding some syscall effect definition (some lines of
code to valgrind/coregrind/m syswrap/*). Worth looking at
valgrind-freebsd.
ported to relatively popular CPU architectures:

IA-32 (i386)
AMD64
ARM
PPC (PPC64)
S390X
MIPS

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more

https://wiki.freebsd.org/Valgrind


Portability

As valgrind goes down to syscall instructions it needs to know the
syscall ABI, signal ABI, etc. of host and guest (emulated) OSes.
Thus valgrind:

won’t work on windows in it’s current form as there is no
documented syscall ABI.
But!

There is some gross hacks to run wine under valgrind to
unstrument PE files. Scary :]
works poorly on rare OSen (like various BSDs), but it’s a
matter of adding some syscall effect definition (some lines of
code to valgrind/coregrind/m syswrap/*). Worth looking at
valgrind-freebsd.
ported to relatively popular CPU architectures:

IA-32 (i386)
AMD64
ARM
PPC (PPC64)
S390X
MIPS

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more

https://wiki.freebsd.org/Valgrind


Portability

As valgrind goes down to syscall instructions it needs to know the
syscall ABI, signal ABI, etc. of host and guest (emulated) OSes.
Thus valgrind:

won’t work on windows in it’s current form as there is no
documented syscall ABI.
But! There is some gross hacks to run wine under valgrind to
unstrument PE files. Scary :]

works poorly on rare OSen (like various BSDs), but it’s a
matter of adding some syscall effect definition (some lines of
code to valgrind/coregrind/m syswrap/*). Worth looking at
valgrind-freebsd.
ported to relatively popular CPU architectures:

IA-32 (i386)
AMD64
ARM
PPC (PPC64)
S390X
MIPS

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more

https://wiki.freebsd.org/Valgrind


Portability

As valgrind goes down to syscall instructions it needs to know the
syscall ABI, signal ABI, etc. of host and guest (emulated) OSes.
Thus valgrind:

won’t work on windows in it’s current form as there is no
documented syscall ABI.
But! There is some gross hacks to run wine under valgrind to
unstrument PE files. Scary :]
works poorly on rare OSen (like various BSDs), but it’s a
matter of adding some syscall effect definition (some lines of
code to valgrind/coregrind/m syswrap/*). Worth looking at
valgrind-freebsd.
ported to relatively popular CPU architectures:

IA-32 (i386)
AMD64
ARM
PPC (PPC64)
S390X
MIPS

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more

https://wiki.freebsd.org/Valgrind


Other tools

By default valgrind runs the memcheck tool (valgrind
–tool=memcheck).
VEX + coregrind is quite generic framework for runtimes
exploration. Other tools shipped with valgrind are:

none - does nothing (useful to measure emulation overlead)

memcheck - default tool to check for common memory errors

helgrind - data race detection tool for multithreaded apps
using POSIX threads for synchronization

drd - another data race detector

cachegrind - l2 cache hit/miss profiler

callgrind - function call and instruction cost profiler

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Other tools: callgrind

An example callgraph of

valgrind —-tool=callgrind ls

is...

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Thank you!

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more



Any questions?

Sergei Trofimovich – slyfox@gentoo.org valgrind overview: runtime memory checker and a bit more


